rtcclient Documentation
Release 0.1.dev95

Di Xu

Aug 17, 2023

Contents

Python & Rational Team Concert Versions

Important Links

User Guide

3.1

3.2 Introduction
3.3 Workitem Attributes
3.4 Installation
3.5 Quick Start
3.6 Advanced Usage
API Documentation
4.1

4.2 ProjectArea
4.3

4.4

4.5

4.6

Indices and tables

Authorso

Client e e

Workitem
Query
Template
Models

rtcclient Documentation, Release 0.1.dev95

IBM® Rational Team Concert™, is built on the Jazz platform, allowing application development teams to use one tool
to plan across teams, code, run standups, plan sprints, and track work. For more info, please refer to here.

IMPORTANT NOTE: This is NOT an official-released Python-based RTC Client.
This library can help you:

¢ Interacts with an RTC server to retrieve objects which contain the detailed information/configuration, including
Project Areas, Team Areas, Workitems and etc;

Creates all kinds of Workitems through self-customized templates or copies from some existing Workitems;

* Performs some actions on the retrieved Workitems, including get/add Comments, get/add/remove Sub-
scribers/Children/Parent and etc;

* Query Workitems using specified filtered rules or directly from your saved queries;

* Logs all the activities and messages during your operation;

Contents 1

http://www.ibm.com/developerworks/downloads/r/rtc/

rtcclient Documentation, Release 0.1.dev95

2 Contents

CHAPTER 1

Python & Rational Team Concert Versions

The project has been tested against Rational Team Concert 5.0.1 and 5.0.2 on Python 2.6, 2.7 and 3.3.

rtcclient Documentation, Release 0.1.dev95

4 Chapter 1. Python & Rational Team Concert Versions

CHAPTER 2

Important Links

 Support and bug-reports: https://github.com/dixudx/rtcclient/issues?q=is %3 Aopen+sort%3 Acomments-desc
* Project source code: https://github.com/dixudx/rtcclient

* Project documentation: https://readthedocs.org/projects/rtcclient/

https://github.com/dixudx/rtcclient/issues?q=is%3Aopen+sort%3Acomments-desc
https://github.com/dixudx/rtcclient
https://readthedocs.org/projects/rtcclient/

rtcclient Documentation, Release 0.1.dev95

6 Chapter 2. Important Links

CHAPTER 3

User Guide

3.1 Authors

Carsten Sauerbrey <carsten.sauerbrey @rohde-schwarz.com> Di Xu <dixudx@users.noreply.github.com>
Di Xu <stephenhsu90@gmail.com> Felipe Ruhland <felipe.ruhland@gmail.com> Siddharth Kaul <sid-
dharth.kaul @rail.bombardier.com> stephenhsu <stephenhsu90@ gmail.com>

3.2 Introduction

In this section, some common terminologies are introduced. For more information, please visit Rational Collaborative
Lifecycle Management Solution

3.2.1 Project Area

Project Area is, quite simply, an area in the repository where information about the project is stored.

In each of the Collaborative Lifecycle Management (CLM) applications, teams perform their work within the context
of a project area. A project area is an area in the repository where information about one or more software projects
is stored. A project area defines the project deliverables, team structure, process, and schedule. You access all
project artifacts, such as iteration plans, work items, requirements, test cases, and files under source control within the
context of a project area. Each project area has a process, which governs how members work.

For example, the project area process defines:
» User roles
* Permissions assigned to roles
* Timelines and iterations

» QOperation behavior (preconditions and follow-up actions) for Change and Configuration Management and Qual-
ity Management

mailto:carsten.sauerbrey@rohde-schwarz.com
mailto:dixudx@users.noreply.github.com
mailto:stephenhsu90@gmail.com
mailto:felipe.ruhland@gmail.com
mailto:siddharth.kaul@rail.bombardier.com
mailto:siddharth.kaul@rail.bombardier.com
mailto:stephenhsu90@gmail.com
http://www-01.ibm.com/support/knowledgecenter/SSYMRC_5.0.2/com.ibm.rational.clm.doc/helpindex_clm.html
http://www-01.ibm.com/support/knowledgecenter/SSYMRC_5.0.2/com.ibm.rational.clm.doc/helpindex_clm.html

rtcclient Documentation, Release 0.1.dev95

* Work item types and their state transition models (for Change and Configuration Management and Quality
Management)

A project area is stored as a top-level or root item in a repository. A project area references project artifacts and
stores the relationships between these artifacts. Access to a project area and its artifacts is controlled by access control
settings and permissions. A project area cannot be deleted from the repository; however, it can be archived, which
places it in an inactive state.

3.2.2 Team Area

You can create a team area to assign users in particular roles for work on a timeline or a particular set of deliverables.
You can create a team area within an existing project area or another team area to establish a team hierarchy.

3.2.3 Component’

A configuration or set of configurations may be divided into components representing some user-defined set of object
versions and/or sub-configurations; for example, components might be used to represent physical components or
software modules. A provider is not required to implement components; they are used only as a way of limiting
the scope of the closure over links. Components might or might not be resources; they might be dynamic sets of
object versions chosen by other criteria such as property values. A provider can also treat each configuration and
sub-configuration in a hierarchy as being separate components.

3.2.4 Change set’

A set of changes to be made to one or more configurations, where each change is described in terms of members
(direct or indirect) that should be added to, replaced in, or removed from some configurations.

3.2.5 Role

Each project area and each team area can define a set of roles. The defined roles are visible in the area where they’re
declared and in all child areas. Roles defined in the project area can be assigned to users for the whole project area or
they can be assigned in any team area. Roles defined in a team area can similarly be assigned in that team or in any
child team. The ordering of roles in this section determines how they will be ordered in other sections of the editor,
but it does not affect the process runtime.

3.2.6 Administrator

If you require permissions, contact an administrator. Project administrators can modify and save this project area and
its team areas.

3.2.7 PlannedFor

In modern software development, a release is divided into a series of fixed-length development periods, typically
ranging from two to six weeks, called iterations. Planning an iteration involves scheduling the work to be done during
an iteration and assigning individual work items to members of the team.

Iteration planning takes place in the context of a project area. Each project area has a development line that is divided
into development phases or iterations. For each iteration, you can create an iteration plan.

3 SCM Data Model

8 Chapter 3. User Guide

http://open-services.net/bin/view/Main/CmQuerySyntaxV1

rtcclient Documentation, Release 0.1.dev95

The project plannedfor defines a start and end date along with an iteration breakdown.

3.2.8 Workitem

You can use work items to manage and track not only your work, but also the work of your team.

3.2.9 Workitem Type

A workitem type is a classification of work items that has a specific set of attributes. Each predefined process template
includes the work item types that allow users to work in that process. For example, the Scrum process includes work
item types such as Epic, Story, Adoption Item, Task, and Retrospective, which support an agile development model.
The Formal Project Management process, which supports a more traditional development model, includes workitem
types such as Project Change Request, Business Need, and Risk. Some work item types, such as Defect and Task, are
used by multiple processes.

3.2.10 Workitem Type Category

Each work item type belongs to a work item category. Multiple work item types can belong to the same work item
category. The work item types of a work item type category share workflow and custom attributes. When you create
a work item type, you must associate it with a category. If you intend to define a unique workflow for the new work
item type, create a new category and associate it with the work item type. Otherwise, you can associate the work item
type with an existing category.

3.3 Workitem Attributes'

Attributes identify the information that you want to capture when users create and modify work items. Attributes are
similar to fields in records. Work item types include all the built-in attributes that are listed in below Table. Note,
however, that not every ready-to-use work item presentation is configured to display all of the built-in attributes in the
Rational Team Concert™ Eclipse and web clients. You can customize the attributes that a work item type contains and
the presentations that are used to display these attributes. For example, you can customize attributes to add behavior.
Such behaviors can include validating an attribute value, or setting an attribute value that is based on other attribute
values.

All the attributes of the rt cclient .workitem.Workitem can be accessed through dot notation and dictionary.

3.3.1 Built-in Attributes

Tablel. Built-in Attributes

! Workitem Customization Overview

3.3. Workitem Attributes! 9

http://www-01.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSYMRC_5.0.2/com.ibm.team.workitem.doc/topics/c_work_item_customization_overview.html

rtcclient Documentation, Release 0.1.dev95

Name | Type| ID Description
ArchivedBooleamrchived Specifies whether the work item is archived.
Com- | Com-| com- | Comments about the work item.
ments | ments ments
Cor- Du- | cor- Correction to the original time estimate (as specified by the Estimate attribute) to resolve
rected | ra- rect- the work item.
Esti- tion | edEs-
mate ti-
mate
Cre- Con- | cre- User who created the work item.
ated trib- | ator
By utor
Cre- Timeg- cre- Date when the work item was created.
ation tamp | ated
Date
De- Large| de- Detailed description of the work item. For example, the description for a defect might
scrip- | HTML scrip- | include a list of steps to follow to reproduce the defect. Any descriptions that are longer
tion tion than 32 KB are truncated, and the entire description is added as an attachment.
Due Timeg- due Date by which the resolution of the work item is due.
Date tamp
Esti- Du- | esti- Estimated amount of time that it takes to resolve the work item.
mate ra- mate
tion
Filed | Cat- | filedA-| Category that identifies the component or functional area that the work item belongs to.
Against] e- gainst | For example, your project might have GUI, Build, and Documentation categories. Each
gory category is associated with a team area; that team is responsible for responding to the
work item.
Found | De- | foundIn Release in which the issue described in the work item was identified.
In liv-
er-
able
1d In- iden- | Identification number that is associated with the work item.
te- tifier
ger
Mod- | Con- | mod- | User who last modified the work item.
ified trib- | i-
By utor | fiedBy
Mod- | Timeg- mod- | Date when the work item was last modified.
ified tamp | ified
Date
Owned| Con- | ownedByOwner of the work item.
By trib-
utor
Planned It- planned-Iteration for which the work item is planned.
For era- | For
tion
Prior- | Pri- | prior- | Ranked importance of a work item. For example, Low, Medium, or High.
ity or- ity
ity
Project| Pro- | pro- Area in the repository where information about the project is stored.
Area | jectAregectArea
Reso- | Small| reso- | How the work item was resolved.
lution | String lution
Reso- | Timeg- re- Date when the work item was resolved.
1%1;?1 tamp | solved Chapter 3. User Guide|
Re- Con- | re- User who resolved the work item.
solved | trib- | solvedBy

Bv

utor

rtcclient Documentation, Release 0.1.dev95

Table2. Built-in Attributes (cont’d)

Name Type ID Description
Restricted UUID contex- | Scope of access to the work item.
Access tld
Severity Severity severity | Indication of the impact of the work item. For example, Minor, Nor-
mal, Major, or Critical.
Start Date Timestamp | start- Date when work began on the work item.
Date
Status Small String | state Status of the work item. For example, New, In Progress, or Resolved.
Subscribed Subscrip- sub- Users who are subscribed to the work item.
By tions scribers
Summary Medium title Brief headline that identifies the work item.
HTML
Tags Tag subject Tags that are used for organizing and querying on work items.
Time Spent Duration time- Length of time that was spent to resolve the work item.
Spent
Type Type type Type of work item. Commonly available types are Defect, Task, and
Story.

3.4 Installation

This part of the documentation covers the installation of rtcclient. The first step to using any software package is
getting it properly installed.

3.4.1 Distribute & Pip

Installing rtcclient is simple with pip, just run this in your terminal:

’$ pip install rtcclient

or, with easy_install:

’$ easy_install rtcclient

3.4.2 Get from the Source Code

RTCClient is actively developed on GitHub, where the code is always available.

You can either clone the public repository and checkout released tags (e.g. tag 0.1.dev95):

$ git clone git://github.com/dixudx/rtcclient.git
$ cd rtcclient
$ git checkout tags/0.1.dev95

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages

easily:

$ python setup.py install

3.4. Installation

11

https://pip.pypa.io
http://pypi.python.org/pypi/setuptools
https://github.com/dixudx/rtcclient

rtcclient Documentation, Release 0.1.dev95

3.5 Quick Start

Eager to get started? This page gives a good introduction in how to get started with rtcclient.
First, make sure that:

* rteclient is installed

* rtcclient is up-to-date

RTCClient is intended to map the objects in RTC (e.g. Project Areas, Team Areas, Workitems) into easily managed
Python objects

Let’s get started with some simple examples.
3.5.1 Setup Logging

You can choose to enable logging during the using of rtcclient. Default logging is for console output. You can also
add your own logging.conf to store all the logs to your specified files.

>>> from rtcclient.utils import setup_basic_logging
you can remove this if you don't need logging
>>> setup_basic_logging ()

3.5.2 Add a Connection to the RTC Server

Adding a connection with RTC Server is very simple.

Begin by importing the RTCClient module:

>>> from rtcclient import RTCClient

Now, let’s input the url, username and password of this to-be-connected RTC Server. For this example,

>>> url = "https://your_domain:9443/jazz"

>>> username = "your_username"

>>> password = "your_password"

>>> myclient = RTCClient (url, username, password)

If your url ends with cem, set ends_with_jazz to False, refer to issue #68 for detailed explanation.

3.5.3 About Proxies

If your RTC Server is behind a proxy, you need to set proxies explicitly.

HTTP Proxies

>>> url = "https://your_domain:9443/jazz"
>>> username = "your_username"
>>> password = "your_password"
example http proxy
>>> proxies = {
'http': 'http://10.10.1.10:3128",

(continues on next page)

12 Chapter 3. User Guide

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

'https': 'http://10.10.1.10:1080",
}

>>> myclient = RTCClient (url, username, password, proxies=proxies)

SOCKS Proxies

In addition to basic HTTP proxies, proxies using the SOCKS protocol are also supported.

>>> url = "https://your_domain:9443/jazz"
>>> username = "your_username"
>>> password = "your_password"
example socks proxy
>>> proxies = {
"http": "socks5://127.0.0.1:1080",
"https": "socksb5://user:pass@host:port"
}
>>> myclient = RTCClient (url, username, password, proxies=proxies)

3.5.4 Get a Workitem

You can get a workitem by calling rtcclient .workitem.Workitem.getWorkitem. The attributes of a
workitem can be accessed through dot notation and dictionary.

Some common attributes are listed in Built-in Attributes.

For example,

>>> wk = myclient.getWorkitem (123456)

get a workitem whose id is 123456

this also works: getting the workitem using the equivalent string
>>> wk2 = myclient.getWorkitem("123456")

wk equals wk2

>>> wk == wk2

True

>>> wk

<Workitem 123456>

>>> str (wk)

'141488"

>>> wk.identifier

u'l41488"

access the attributes through dictionary
>>> wk["title"]

u'title demo'

access the attributes through dot notation
>>> wk.title

u'title demo'

>>> wk.state

u'Closed’

>>> wk.description

u'demo description'

>>> wk.creator

u'testerl@email.com'

>>> wk.created

u'2015-07-16T08:02:30.6582"'

(continues on next page)

3.5. Quick Start 13

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

>>> wk.comments
[u'comment test 0', u'add comment test 1', u'add comment test 2']

3.5.5 About Returned Properties

You can also customize your preferred properties to be returned by specifying returned_properties when the called
methods have this optional parameter, which can also GREATLY IMPROVE the performance of this client especially
when getting or querying lots of workitems.

For the meanings of these attributes, please refer to Built-in Attributes.

Important Note: returned_properties is an advanced parameter, the returned properties can be found in in-
stance_obj.field_alias.values(), e.g. myworkiteml field_alias.values(). If you don’t care the performance, just leave it
alone with None.

>>> import pprint

print the field alias

>>> pprint.pprint (wk2.field_alias, width=1)
{u'affectedByDefect': u'calm:affectedByDefect',
u'affectsExecutionResult': u'calm:affectsExecutionResult',
u'affectsPlanItem': u'calm:affectsPlanItem',
u'apply_step': u'rtc_cm:apply_step',

u'archived': u'rtc_cm:archived',
u'blocksTestExecutionRecord': u'calm:blocksTestExecutionRecord',
u'comments': u'rtc_cm:comments',

u'contextId': u'rtc_cm:contextId',

u'correctedEstimate': u'rtc_cm:correctedEstimate’',
u'created': u'dc:created',

u'creator': u'dc:creator',

u'description': u'dc:description’',

u'due': u'rtc_cm:due'’',

u'elaboratedByArchitectureElement': u'calm:elaboratedByArchitectureElement',
u'estimate': u'rtc_cm:estimate’',

u'filedAgainst': u'rtc_cm:filedAgainst',

u'foundIn': u'rtc_cm:foundIn',

u'identifier': u'dc:identifier’',

u'implementsRequirement': u'calm:implementsRequirement',
u'modified': u'dc:modified',

u'modifiedBy': u'rtc_cm:modifiedBy',

u'ownedBy': u'rtc_cm:ownedBy',

u'plannedFor': u'rtc_cm:plannedFor',

u'priority': u'oslc_cm:priority',

u'progressTracking': u'rtc_cm:progressTracking',
u'projectArea': u'rtc_cm:projectArea’,
u'relatedChangeManagement': u'oslc_cm:relatedChangeManagement',
u'relatedExecutionRecord': u'calm:relatedExecutionRecord’,
u'relatedRequirement': u'calm:relatedRequirement',
u'relatedTestCase': u'calm:relatedTestCase',
u'relatedTestPlan': u'calm:relatedTestPlan',
u'relatedTestScript': u'calm:relatedTestScript',
u'relatedTestSuite': u'calm:relatedTestSuite',
u'resolution': u'rtc_cm:resolution’',

u'resolved': u'rtc_cm:resolved',

u'resolvedBy': u'rtc_cm:resolvedBy',

u'schedule': u'oslc_pl:schedule’,

(continues on next page)

14 Chapter 3. User Guide

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

u'severity': u'oslc_cm:severity',
u'startDate': u'rtc_cm:startDate’,

u'state': u'rtc_cm:state’',

u'subject': u'dc:subject',

u'subscribers': u'rtc_cm:subscribers’',
u'teamArea': u'rtc_cm:teamArea’',
u'testedByTestCase': u'calm:testedByTestCase',
u'timeSheet': u'rtc_cm:timeSheet’',
u'timeSpent': u'rtc_cm:timeSpent',

u'title': u'dc:title',

u'trackedWorkItem': u'oslc_cm:trackedWorkItem',
u'tracksChanges': u'calm:tracksChanges',
u'tracksRequirement': u'calm:tracksRequirement',
u'tracksWorkItem': u'oslc_cm:tracksWorkItem',
u'type': u'dc:type'}

Note: these field aliases may differ due to the type of workitems. But most of the common-used attributes will stay
unchanged.

The returned_properties is a string composed by the above values with comma separated.

It will run faster if returned_properties is specified. Because the client will only get/request the attributes you specified.

>>> returned_properties = "dc:title,dc:identifier,rtc_cm:state,rtc_cm:ownedBy"

specify the returned properties: title, identifier, state, owner

This is optional. All properties will be returned if not specified

>>> wk_rp = myclient.getWorkitem (123456,
returned_properties=returned_properties)

>>> wk_rp.identifier

u'l41488"

access the attributes through dictionary

>>> wk_rp["title"]

access the attributes through dot notation

u'title demo'

>>> wk_rp.title

u'title demo'

>>> wk_rp.state

u'Closed’

>>> wk_rp.ownedBy

u'testerl@email.com'

3.5.6 Add a Comment to a Workitem

After getting the rtcclient .workitem.Workitem object, you can add a comment to this workitem by calling
addComment.

>>> mycomment = wk.addComment ("add comment test 3")
>>> mycomment

<Comment 3>

>>> mycomment .created

u'2015-08-22T03:55:00.8392"

>>> mycomment.creator

u'testerl@email.com'

>>> mycomment .description

u'add comment test 3!

(continues on next page)

3.5. Quick Start 15

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

>>> str (mycomment)
|3|

3.5.7 Get all Workitems

All workitems can be fetched by calling rtcclient .client .RTCClient.getWorkitems. It will take a long
time to fetch all the workitems in some certain project areas if there are already many existing workitems.

If both projectarea_id and projectarea_name are None, all the workitems in all project areas will be returned.

>>> workitems_list = myclient.getWorkitems (projectarea_id=None,
projectarea_name=None,
returned_properties=returned_properties)
get all workitems in a specific project area
>>> projectarea_name = "my_projectarea_name"
>>> workitems_list2 = myclient.getWorkitems (projectarea_name=projectarea_name,
returned_properties=returned_properties)

3.5.8 Query Workitems

After customizing your query string, all the workitems meet the conditions will be fetched.

>>> myquery = myclient.query # query class

>>> projectarea_name = "my_projectarea_name"

customize your query string

below query string means: query all the workitems with title "use case 1"

>>> myquerystr = 'dc:title="use case 1"'

>>> returned_prop = "dc:title,dc:identifier,rtc_cm:state, rtc_cm:ownedBy"

>>> queried_wis = myquery.queryWorkitems (myquerystr,
projectarea_name=projectarea_name,
returned_properties=returned_prop)

More detailed and advanced syntax on querying, please refer to guery syntax.

3.5.9 Query Workitems by Saved Query

You may have created several customized queries through RTC Web GUI or got some saved queries created by other
team members. Using these saved queries

>>> myquery = myclient.query # query class

>>> saved_query_url = 'http://test.url:9443/jazz/xxxxxxxx&id=xxxxx"

>>> projectarea_name = "my_projectarea_name"

get all saved queries

WARNING: now the RTC server cannot correctly list all the saved queries

i It seems to be a bug of RTC. Recommend using "~ runSavedQueryByUrl® to
query all the workitems if the query is saved.
>>> allsavedqueries = myquery.getAllSavedQueries (projectarea_name=projectarea_name)

saved queries created by testerl@email.com

>>> allsavedqueries = myquery.getAllSavedQueries (projectarea_name=projectarea_name,
creator="testerl@email.com")

my saved queries

>>> mysavedqueries = myquery.getMySavedQueries (projectarea_name=projectarea_name)

(continues on next page)

16 Chapter 3. User Guide

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

>>> mysavedquery = mysavedqueries[0]

>>> returned_prop = "dc:title,dc:identifier,rtc_cm:state, rtc_cm:ownedBy"

>>> queried_wis = myquery.runSavedQuery (mysavedquery,
returned_properties=returned_prop)

3.5.10 Query Workitems by Saved Query Url

You can also query all the workitems directly using your saved query’s url.

>>> myquery = myclient.query # query class

>>> saved_query_url = 'http://test.url:9443/jazz/xxxxxxxx&1d=xxxxx"

>>> returned_prop = "dc:title,dc:identifier,rtc_cm:state, rtc_cm:ownedBy"

>>> queried_wis = myquery.runSavedQueryByUrl (saved_query_url,
returned_properties=returned_prop)

3.6 Advanced Usage

This document covers some of rtcclient more advanced features.

3.6.1 Query Syntax’

The following section describes the basic query syntax.
Comparison Operators

e = test for equality of a term,

e !=: test for inequality of a term,

e < : test less-than,

e > : test greater-than,

e <

: test less-than or equal,

e >= test greater-than or equal,

e in: test for equality of any of the terms.
Boolean Operators

* and : conjunction

Query Modifiers
e /sort : set the sort order for returned items
BNF
query ::= (term (boolean_op term)x)+ modifiers
term ::= (identifier operator)? value+ | (identifier "in")? in_val
Operator T = n_mn | " !:" | "<" ‘ ">" | "<:" | ">:"
boolean_op ::= "and"
modifiers ::= sort?

(continues on next page)

2 Change Management Query Syntax

3.6. Advanced Usage 17

http://open-services.net/bin/view/Main/CmQuerySyntaxV1

rtcclient Documentation, Release 0.1.dev95

(continued from previous page)

sort 1= "/sort" "=" identifier

identifier ::= word (":" word)?

in_val ci= "[" value ("," value)x "]"

value ::= (integer | string)

word ::= /any sequence of letters and numbers, starting with a letter/
string ::= '""'" + /any sequence of characters/ + '"!'

integer ::= /any sequence of integers/

Notes

TR LENTIRE]

1. a word consists of any character with the Unicode class Alpha (alpha-numeric) as well as the characters .,
and ‘s_n.

3

2. a string may include the quote character if preceded by the escape character *“, as in “my “quoted” example”.

3.6.2 Compose your Query String

Based on the above query syntax, it is easy to compose your own query string.

Important Note: For the identifier in query syntax, please refer to field alias and Built-in Attributes.
Here are several examples.

Example 1: Query all the defects with tags “bvt” whose state is not “Closed”

Note: here defects’ state “default_workflow.state.s1” means “Closed”. This may vary in your customized workitem
type.

>>> query_str = ('dc:type="defect" and '
'rtc_cm:state!="default_workflow.state.sl" and '
'dc:subject="bvt"")

Example 2: Query all the defects which are modified after 18:42:30 on Dec. 02, 2008

Note: here defects’ state “default_workflow.state.s1”” means “Closed”.

’>>> query_str = 'dc:type="defect" and dc:modified>="12-02-2008T18:42:30""

Example 3: Query all the defects with tags “bvt” or “testautomation”

’>>> query_str = 'dc:type="defect" and dc:subject in ["bvt", "testautomation"]'

Example 4: Query all the defects owned/created/modified by “tester @email.com”

>>> user_url = "https://your_domain:9443/jts/users/tester@email.com"

>>> query_str = 'dc:type="defect" and rtc_cm:ownedBy="%s"' % user_url
>>> query_str = 'dc:type="defect" and dc:creator=" "' % user_url

>>> query_str = 'dc:type="defect" and rtc_cm:modifiedBy="%s"' % user_url

Note: please replace your_domain with your actual RTC server domain.

Example 5: Query all the defects whose severity are “Critical”

>>> projectarea_name="My ProjectArea"

>>> severity = myclient.getSeverity ("Critical",
projectarea_name=projectarea_name)

>>> query_str = 'dc:type="defect" and oslc_cm:severity="%s"' % severity.url

Example 6: Query all the defects whose priority are “High”

18 Chapter 3. User Guide

mailto:tester@email.com

rtcclient Documentation, Release 0.1.dev95

>>> projectarea_name="My ProjectArea"
>>> priority = myclient.getPriority("High",
projectarea_name=projectarea_name)

o

>>> query_str = 'dc:type="defect" and oslc_cm:priority="%s"' % priority.url

Example 7: Query all the defects whose FiledAgainst are “FiledAgainstDemo”

>>> projectarea_name="My ProjectArea"

>>> filedagainst = myclient.getFiledAgainst ("FiledAgainstDemo",
projectarea_name=projectarea_name)

>>> query_str = 'dc:type="defect" and rtc_cm:filedAgainst="¢s"' % filedagainst.url

3.6. Advanced Usage 19

rtcclient Documentation, Release 0.1.dev95

20

Chapter 3. User Guide

CHAPTER 4

API Documentation

4.1 Client

4.2 ProjectArea
4.3 Workitem
4.4 Query

4.5 Template

4.6 Models

21

rtcclient Documentation, Release 0.1.dev95

22

Chapter 4. API Documentation

CHAPTER B

Indices and tables

* genindex
* modindex

e search

23

	Python & Rational Team Concert Versions
	Important Links
	User Guide
	Authors
	Introduction
	Workitem Attributes
	Installation
	Quick Start
	Advanced Usage

	API Documentation
	Client
	ProjectArea
	Workitem
	Query
	Template
	Models

	Indices and tables

